3.1.69 \(\int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx\) [69]

3.1.69.1 Optimal result
3.1.69.2 Mathematica [C] (verified)
3.1.69.3 Rubi [A] (verified)
3.1.69.4 Maple [A] (verified)
3.1.69.5 Fricas [C] (verification not implemented)
3.1.69.6 Sympy [F]
3.1.69.7 Maxima [F]
3.1.69.8 Giac [F]
3.1.69.9 Mupad [F(-1)]

3.1.69.1 Optimal result

Integrand size = 33, antiderivative size = 284 \[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\frac {2 b \sqrt {-d e+c f} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {g+h x} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {2 \sqrt {-d e+c f} (b g-a h) \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {-d e+c f}}\right ),\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {g+h x}} \]

output
2*b*EllipticE(f^(1/2)*(d*x+c)^(1/2)/(c*f-d*e)^(1/2),((-c*f+d*e)*h/f/(-c*h+ 
d*g))^(1/2))*(c*f-d*e)^(1/2)*(d*(f*x+e)/(-c*f+d*e))^(1/2)*(h*x+g)^(1/2)/d/ 
h/f^(1/2)/(f*x+e)^(1/2)/(d*(h*x+g)/(-c*h+d*g))^(1/2)-2*(-a*h+b*g)*Elliptic 
F(f^(1/2)*(d*x+c)^(1/2)/(c*f-d*e)^(1/2),((-c*f+d*e)*h/f/(-c*h+d*g))^(1/2)) 
*(c*f-d*e)^(1/2)*(d*(f*x+e)/(-c*f+d*e))^(1/2)*(d*(h*x+g)/(-c*h+d*g))^(1/2) 
/d/h/f^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2)
 
3.1.69.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 19.43 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.12 \[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=-\frac {2 \left (-b d^2 \sqrt {-c+\frac {d e}{f}} (e+f x) (g+h x)-i b (d e-c f) h (c+d x)^{3/2} \sqrt {\frac {d (e+f x)}{f (c+d x)}} \sqrt {\frac {d (g+h x)}{h (c+d x)}} E\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {d e}{f}}}{\sqrt {c+d x}}\right )|\frac {d f g-c f h}{d e h-c f h}\right )+i d (b e-a f) h (c+d x)^{3/2} \sqrt {\frac {d (e+f x)}{f (c+d x)}} \sqrt {\frac {d (g+h x)}{h (c+d x)}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-c+\frac {d e}{f}}}{\sqrt {c+d x}}\right ),\frac {d f g-c f h}{d e h-c f h}\right )\right )}{d^2 \sqrt {-c+\frac {d e}{f}} f h \sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \]

input
Integrate[(a + b*x)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]
 
output
(-2*(-(b*d^2*Sqrt[-c + (d*e)/f]*(e + f*x)*(g + h*x)) - I*b*(d*e - c*f)*h*( 
c + d*x)^(3/2)*Sqrt[(d*(e + f*x))/(f*(c + d*x))]*Sqrt[(d*(g + h*x))/(h*(c 
+ d*x))]*EllipticE[I*ArcSinh[Sqrt[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g - c 
*f*h)/(d*e*h - c*f*h)] + I*d*(b*e - a*f)*h*(c + d*x)^(3/2)*Sqrt[(d*(e + f* 
x))/(f*(c + d*x))]*Sqrt[(d*(g + h*x))/(h*(c + d*x))]*EllipticF[I*ArcSinh[S 
qrt[-c + (d*e)/f]/Sqrt[c + d*x]], (d*f*g - c*f*h)/(d*e*h - c*f*h)]))/(d^2* 
Sqrt[-c + (d*e)/f]*f*h*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x])
 
3.1.69.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 284, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {176, 124, 123, 131, 131, 130}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {b \int \frac {\sqrt {g+h x}}{\sqrt {c+d x} \sqrt {e+f x}}dx}{h}-\frac {(b g-a h) \int \frac {1}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}}dx}{h}\)

\(\Big \downarrow \) 124

\(\displaystyle \frac {b \sqrt {g+h x} \sqrt {\frac {d (e+f x)}{d e-c f}} \int \frac {\sqrt {\frac {d g}{d g-c h}+\frac {d h x}{d g-c h}}}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}}}dx}{h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {(b g-a h) \int \frac {1}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}}dx}{h}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {2 b \sqrt {g+h x} \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {(b g-a h) \int \frac {1}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}}dx}{h}\)

\(\Big \downarrow \) 131

\(\displaystyle \frac {2 b \sqrt {g+h x} \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {(b g-a h) \sqrt {\frac {d (e+f x)}{d e-c f}} \int \frac {1}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}} \sqrt {g+h x}}dx}{h \sqrt {e+f x}}\)

\(\Big \downarrow \) 131

\(\displaystyle \frac {2 b \sqrt {g+h x} \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {(b g-a h) \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} \int \frac {1}{\sqrt {c+d x} \sqrt {\frac {d e}{d e-c f}+\frac {d f x}{d e-c f}} \sqrt {\frac {d g}{d g-c h}+\frac {d h x}{d g-c h}}}dx}{h \sqrt {e+f x} \sqrt {g+h x}}\)

\(\Big \downarrow \) 130

\(\displaystyle \frac {2 b \sqrt {g+h x} \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} E\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right )|\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {\frac {d (g+h x)}{d g-c h}}}-\frac {2 (b g-a h) \sqrt {c f-d e} \sqrt {\frac {d (e+f x)}{d e-c f}} \sqrt {\frac {d (g+h x)}{d g-c h}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {f} \sqrt {c+d x}}{\sqrt {c f-d e}}\right ),\frac {(d e-c f) h}{f (d g-c h)}\right )}{d \sqrt {f} h \sqrt {e+f x} \sqrt {g+h x}}\)

input
Int[(a + b*x)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]),x]
 
output
(2*b*Sqrt[-(d*e) + c*f]*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sqrt[g + h*x]*Elli 
pticE[ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqrt[-(d*e) + c*f]], ((d*e - c*f)*h)/ 
(f*(d*g - c*h))])/(d*Sqrt[f]*h*Sqrt[e + f*x]*Sqrt[(d*(g + h*x))/(d*g - c*h 
)]) - (2*Sqrt[-(d*e) + c*f]*(b*g - a*h)*Sqrt[(d*(e + f*x))/(d*e - c*f)]*Sq 
rt[(d*(g + h*x))/(d*g - c*h)]*EllipticF[ArcSin[(Sqrt[f]*Sqrt[c + d*x])/Sqr 
t[-(d*e) + c*f]], ((d*e - c*f)*h)/(f*(d*g - c*h))])/(d*Sqrt[f]*h*Sqrt[e + 
f*x]*Sqrt[g + h*x])
 

3.1.69.3.1 Defintions of rubi rules used

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 124
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d 
*x]*Sqrt[b*((e + f*x)/(b*e - a*f))]))   Int[Sqrt[b*(e/(b*e - a*f)) + b*f*(x 
/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !(GtQ[b/(b*c - a*d), 0] && Gt 
Q[b/(b*e - a*f), 0]) &&  !LtQ[-(b*c - a*d)/d, 0]
 

rule 130
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ 
[b/(b*e - a*f), 0] && SimplerQ[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f 
*x] && (PosQ[-(b*c - a*d)/d] || NegQ[-(b*e - a*f)/f])
 

rule 131
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[Sqrt[b*((c + d*x)/(b*c - a*d))]/Sqrt[c + d*x]   Int[1/(Sq 
rt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e + f*x]), x 
], x] /; FreeQ[{a, b, c, d, e, f}, x] &&  !GtQ[(b*c - a*d)/b, 0] && Simpler 
Q[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.1.69.4 Maple [A] (verified)

Time = 1.62 (sec) , antiderivative size = 498, normalized size of antiderivative = 1.75

method result size
elliptic \(\frac {\sqrt {\left (d x +c \right ) \left (f x +e \right ) \left (h x +g \right )}\, \left (\frac {2 a \left (\frac {g}{h}-\frac {e}{f}\right ) \sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {g}{h}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {e}{f}}{-\frac {g}{h}+\frac {e}{f}}}\, F\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )}{\sqrt {d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g}}+\frac {2 b \left (\frac {g}{h}-\frac {e}{f}\right ) \sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}\, \sqrt {\frac {x +\frac {c}{d}}{-\frac {g}{h}+\frac {c}{d}}}\, \sqrt {\frac {x +\frac {e}{f}}{-\frac {g}{h}+\frac {e}{f}}}\, \left (\left (-\frac {g}{h}+\frac {c}{d}\right ) E\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )-\frac {c F\left (\sqrt {\frac {x +\frac {g}{h}}{\frac {g}{h}-\frac {e}{f}}}, \sqrt {\frac {-\frac {g}{h}+\frac {e}{f}}{-\frac {g}{h}+\frac {c}{d}}}\right )}{d}\right )}{\sqrt {d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g}}\right )}{\sqrt {d x +c}\, \sqrt {f x +e}\, \sqrt {h x +g}}\) \(498\)
default \(-\frac {2 \left (F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) a d e \,h^{2}-F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) a d f g h -F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c e \,h^{2}+F\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c f g h +E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c e \,h^{2}-E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b c f g h -E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d e g h +E\left (\sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}, \sqrt {\frac {\left (e h -f g \right ) d}{f \left (c h -d g \right )}}\right ) b d f \,g^{2}\right ) \sqrt {\frac {\left (f x +e \right ) h}{e h -f g}}\, \sqrt {\frac {\left (d x +c \right ) h}{c h -d g}}\, \sqrt {-\frac {\left (h x +g \right ) f}{e h -f g}}\, \sqrt {d x +c}\, \sqrt {f x +e}\, \sqrt {h x +g}}{h^{2} f d \left (d f h \,x^{3}+c f h \,x^{2}+d e h \,x^{2}+d f g \,x^{2}+c e h x +c f g x +d e g x +c e g \right )}\) \(566\)

input
int((b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x,method=_RETURNVERB 
OSE)
 
output
((d*x+c)*(f*x+e)*(h*x+g))^(1/2)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2)* 
(2*a*(g/h-e/f)*((x+g/h)/(g/h-e/f))^(1/2)*((x+c/d)/(-g/h+c/d))^(1/2)*((x+e/ 
f)/(-g/h+e/f))^(1/2)/(d*f*h*x^3+c*f*h*x^2+d*e*h*x^2+d*f*g*x^2+c*e*h*x+c*f* 
g*x+d*e*g*x+c*e*g)^(1/2)*EllipticF(((x+g/h)/(g/h-e/f))^(1/2),((-g/h+e/f)/( 
-g/h+c/d))^(1/2))+2*b*(g/h-e/f)*((x+g/h)/(g/h-e/f))^(1/2)*((x+c/d)/(-g/h+c 
/d))^(1/2)*((x+e/f)/(-g/h+e/f))^(1/2)/(d*f*h*x^3+c*f*h*x^2+d*e*h*x^2+d*f*g 
*x^2+c*e*h*x+c*f*g*x+d*e*g*x+c*e*g)^(1/2)*((-g/h+c/d)*EllipticE(((x+g/h)/( 
g/h-e/f))^(1/2),((-g/h+e/f)/(-g/h+c/d))^(1/2))-c/d*EllipticF(((x+g/h)/(g/h 
-e/f))^(1/2),((-g/h+e/f)/(-g/h+c/d))^(1/2))))
 
3.1.69.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 671, normalized size of antiderivative = 2.36 \[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=-\frac {2 \, {\left (3 \, \sqrt {d f h} b d f h {\rm weierstrassZeta}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, \frac {3 \, d f h x + d f g + {\left (d e + c f\right )} h}{3 \, d f h}\right )\right ) + {\left (b d f g + {\left (b d e + {\left (b c - 3 \, a d\right )} f\right )} h\right )} \sqrt {d f h} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (d^{2} f^{2} g^{2} - {\left (d^{2} e f + c d f^{2}\right )} g h + {\left (d^{2} e^{2} - c d e f + c^{2} f^{2}\right )} h^{2}\right )}}{3 \, d^{2} f^{2} h^{2}}, -\frac {4 \, {\left (2 \, d^{3} f^{3} g^{3} - 3 \, {\left (d^{3} e f^{2} + c d^{2} f^{3}\right )} g^{2} h - 3 \, {\left (d^{3} e^{2} f - 4 \, c d^{2} e f^{2} + c^{2} d f^{3}\right )} g h^{2} + {\left (2 \, d^{3} e^{3} - 3 \, c d^{2} e^{2} f - 3 \, c^{2} d e f^{2} + 2 \, c^{3} f^{3}\right )} h^{3}\right )}}{27 \, d^{3} f^{3} h^{3}}, \frac {3 \, d f h x + d f g + {\left (d e + c f\right )} h}{3 \, d f h}\right )\right )}}{3 \, d^{2} f^{2} h^{2}} \]

input
integrate((b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm=" 
fricas")
 
output
-2/3*(3*sqrt(d*f*h)*b*d*f*h*weierstrassZeta(4/3*(d^2*f^2*g^2 - (d^2*e*f + 
c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f + c^2*f^2)*h^2)/(d^2*f^2*h^2), -4/27*(2* 
d^3*f^3*g^3 - 3*(d^3*e*f^2 + c*d^2*f^3)*g^2*h - 3*(d^3*e^2*f - 4*c*d^2*e*f 
^2 + c^2*d*f^3)*g*h^2 + (2*d^3*e^3 - 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + 2*c^3 
*f^3)*h^3)/(d^3*f^3*h^3), weierstrassPInverse(4/3*(d^2*f^2*g^2 - (d^2*e*f 
+ c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f + c^2*f^2)*h^2)/(d^2*f^2*h^2), -4/27*( 
2*d^3*f^3*g^3 - 3*(d^3*e*f^2 + c*d^2*f^3)*g^2*h - 3*(d^3*e^2*f - 4*c*d^2*e 
*f^2 + c^2*d*f^3)*g*h^2 + (2*d^3*e^3 - 3*c*d^2*e^2*f - 3*c^2*d*e*f^2 + 2*c 
^3*f^3)*h^3)/(d^3*f^3*h^3), 1/3*(3*d*f*h*x + d*f*g + (d*e + c*f)*h)/(d*f*h 
))) + (b*d*f*g + (b*d*e + (b*c - 3*a*d)*f)*h)*sqrt(d*f*h)*weierstrassPInve 
rse(4/3*(d^2*f^2*g^2 - (d^2*e*f + c*d*f^2)*g*h + (d^2*e^2 - c*d*e*f + c^2* 
f^2)*h^2)/(d^2*f^2*h^2), -4/27*(2*d^3*f^3*g^3 - 3*(d^3*e*f^2 + c*d^2*f^3)* 
g^2*h - 3*(d^3*e^2*f - 4*c*d^2*e*f^2 + c^2*d*f^3)*g*h^2 + (2*d^3*e^3 - 3*c 
*d^2*e^2*f - 3*c^2*d*e*f^2 + 2*c^3*f^3)*h^3)/(d^3*f^3*h^3), 1/3*(3*d*f*h*x 
 + d*f*g + (d*e + c*f)*h)/(d*f*h)))/(d^2*f^2*h^2)
 
3.1.69.6 Sympy [F]

\[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int \frac {a + b x}{\sqrt {c + d x} \sqrt {e + f x} \sqrt {g + h x}}\, dx \]

input
integrate((b*x+a)/(d*x+c)**(1/2)/(f*x+e)**(1/2)/(h*x+g)**(1/2),x)
 
output
Integral((a + b*x)/(sqrt(c + d*x)*sqrt(e + f*x)*sqrt(g + h*x)), x)
 
3.1.69.7 Maxima [F]

\[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int { \frac {b x + a}{\sqrt {d x + c} \sqrt {f x + e} \sqrt {h x + g}} \,d x } \]

input
integrate((b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm=" 
maxima")
 
output
integrate((b*x + a)/(sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)
 
3.1.69.8 Giac [F]

\[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int { \frac {b x + a}{\sqrt {d x + c} \sqrt {f x + e} \sqrt {h x + g}} \,d x } \]

input
integrate((b*x+a)/(d*x+c)^(1/2)/(f*x+e)^(1/2)/(h*x+g)^(1/2),x, algorithm=" 
giac")
 
output
integrate((b*x + a)/(sqrt(d*x + c)*sqrt(f*x + e)*sqrt(h*x + g)), x)
 
3.1.69.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b x}{\sqrt {c+d x} \sqrt {e+f x} \sqrt {g+h x}} \, dx=\int \frac {a+b\,x}{\sqrt {e+f\,x}\,\sqrt {g+h\,x}\,\sqrt {c+d\,x}} \,d x \]

input
int((a + b*x)/((e + f*x)^(1/2)*(g + h*x)^(1/2)*(c + d*x)^(1/2)),x)
 
output
int((a + b*x)/((e + f*x)^(1/2)*(g + h*x)^(1/2)*(c + d*x)^(1/2)), x)